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I. INTRODUCTION

Applebaum's original adaptive array concept [1] uses a steering

vector in the weight control loops. This steering vector controls

the quiescent pattern of the array and can be used to point a beam

in the direction of the desired signal. Our purpose in this paper

is to discuss the effect of random errors in this steering vector.

When the Applebaum array is used in radar, the desired signal

is often a weak pulsed signal with a pulse width that is very short

compared to the time constants of the array feedback loops. In this

case the array pattern is not affected much by the desired signal,

because the desired signal is not present long enough to have much

impact on the weights. The array does not null the desired signal,

and minor errors in the steering vector are of little consequence.

In communication applications of these arrays, however, the desired

signal may be present continuously and may also be a strong signal.

In this case the array is much more sensitive to errors in the steering

vector, because the array may null the desired signal. With a con-

tinuous desired signal present, the array feedback attempts to mini-

mize the array output desired signal power. If the steering vector

components are properly set, and the desired signal is strong, the

array does this by simply lowering the absolute magnitude of the array

pattern. Lowering the pattern magnitude reduces the array output

desired signal power, interference power and thermal noise power all

proportionately, so the output signal-to-interference-plus-noise ratio

(SINR) is not affected. But if the steering vector is incorrectly



set, the array feedback will null the desired signal without reducing

the output thermal noise or interference power. The result is a rapid

drop in output SINR. For this reason, the performance of the array

is sensitive to steering vector errors.

In a previous paper [2], the author described the effect on array

performance of one type of steering vector error, a beam pointing

error. A beam pointing error occurs when the actual desired signal

arrival angle is different from its assumed or estimated value. In

that paper, the steering vector components were correct except that

they were chosen for a beam in a slightly different direction from

the desired signal.

In the present paper, we study the effects of random errors in

the steering vector components. We assume the steering vector has

been chosen to produce a beam in the proper direction, but that each

component of the steering vector has a random error, uncorrelated

from one element to another. We show how the output SINR depends

on the variance of the steering vector errors. We include in our

model the effects of signal powers, arrival angles and bandwidths,

and also the number of elements in the array. The results show how

accurate a steering vector has to be for a given level of array per-

formance.

In practice, random steering vector errors can occur for different

reasons, depending on how the steering vector is derived. For example,

one way to determine a steering vector is to allow an LMS array (using

a reference signal [3,4)) to adapt to a desired signal during an interval



where it is known that there is no interference. The weights obtained

during this interval may then be used as steering weights during a later

interval when interference may be present. However, steering vector

components obtained in this way will have random errors because of the

noise present in the array feedhack loops when the weiqhts are measuired.

Another way of obtaining a steering vector is to compute it, based on a

known signal arrival angle. However, the steering vector computed may

differ from its ideal value because receiver sensitivities, antenna

gains, etc., in the actual array differ from the values assumed in the

computation. Moreover, even a correctly computed steering vector can he

carried to only so many places of accuracy, because of truncation,

either in the calculations or in the storage of the steering vector.

The difference between the computed steering vector and the ideal one is

an error that must he kept small. The accuracy required can be

determined from the curves given here.

Section I of the paper defines the problem, establishes notation

and develops the necessary equations. Section III contains the results.

11. FORMULATION

Consider the N-element adaptive array shown in Figure 1. The ele-

ments are assumed to he isotropic and to lie in a straight line with half

wavelength spacing. xj(t) is the analytic signal received on element j.

xj(t) is multiplied by complex weight wj and summed to produce the array

output s(t). We assume the weights are controlled by Applehaum correla-

tion loops [1], or by computer control [51, such that the steady-state

weight vector W (wl,w2, ... wN) T is given by

3



where 0 is the covariance matrix

I = E(X*XT) (2)

and Ws is the steering vector

Ws = (wsl S1Ws2' -.. ,WsN )T  (3)

In these equations T denotes transpose, * complex conjugate and E(.)

expectation. X is the signal vector

X = (Xl (t), x2(t), ... , Nt)) (4)

In this paper we are interested in how random errors in the steer-

ing vector W affect the performance of the array. To have a specfic

problem to study, we shall suppose a desired signal and one interference

signal are incident on the array. Also, we assume each element signal

xj(t) contains thermal noise as well. Thus, the jth element signal

has the form

M a(t) + TM(t) + gj(t), (5)

where dM(t) is the desired signal, T (t) is the interference and

n.(t) is the thermal noise. These signals are defined as follows.

Let the desired signal arrive from angle ed relative to broadside.

(0 is defined in Figure 1.) The desired signal in each element is

then a delayed version of that in element 1,

d = d t-(J-i) Td] , (6)

4
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Figure 1. An N-element adaptive array.



where 4{t) is the desired signal waveform on element 1 and Td is the

time delay between two adjacent elements in the array,

Td = sin Od,  (7)

with L the element separation and c the velocity of propagation.

Similarly, let the interference arrive from angle ai, so

I = [t - (j - 1) Ti] , (8)

where

T =L sin ei, (9)

with '(t) the interference waveform on element 1.

Finally, let the thermal noise components nj(t) be independent,
2

zeru mean, bandlimited Gaussian noise signals with variance a ,

E (i (t) nk(t)l a 2 6 (10)

where 6jk is the Kronecker delta. The signals (t), 1(t) and nj(t)

are all assumed statistically independent of each other.

Because of (5), the signal vector X in (4) may also be split

into its desired, interference and noise components:

X = Xd + Xi+ Xn .  (11)

Then because Xd, Xi and Xn are statistically independent, the covari-

ance matrix in (2) may be written

6



d + 0* + On(12

where Od is the covariance matrix for the desired signal,

Rd (o) R d(-T d) ... Rd -N1T]

R d(T d R d(o)

=~E(Xd)-

r-1N1)T

(R 1( . R 1

R.i(T.) Rio

Oi=EX i i)(14)

K i [N-1) Ti] Ri(o)

andO n is the covariance matrix for the thermal noise,

=E(X * X) T 21. (15)

In these equations I is the identity matrix and Rd) and R.(T) are
d1

the autocorrelation functions of d(t) and 1(t):

7



Rd(T) E Ed(t + T) d*(t)] (16)

dQ

and

Ri()= E [1(t + T) 11*(t)] . (17)

Since R(-T) R*(T), 0d' Oi and $nare Hermitian matrices.

To simplify our results later, it is helpful if we normalize these

matrices. To do this, we define the signal powers,

Sd = Rd(o) = desired signal power per element, (18)

and

S. = Ri(o) = interference power per element, (19)

the normalized autocorrelation functions,

Pd(T) = Rd(T)/Sd, (20)

and

Pi(T) = Ri(T)/S i ,  (21)

and the signal-to-noise ratios

Sd

d= = desired signal-to-noise ratio (SNR)
per element, (22)

8



I
and

S.

a
--2 interference-to-noise ratio (INR) per element (23)

With these definitions, the covariance matrices may be written

2 2
0 do+Iio + Dno), (24)

where Odo is the normalized desired signal covariance matrix

Pd( °) pd(-Td) Pd [-(N-i) Td]
d( Td)

tdo = Cd , (25)

(d [(N-1) Td] ,Pd(O)

0i0 is the normalized interference covariance matrix

Pi () pi(-Ti) "Pi [-(N-i) Ti]

( i (
T i )

io= i , (26)

[ 1 ]I



and Ono is the normalized noise covariance matrix

Ono = I. (27)

In order to carry out a specific calculation below, we shall

assume the desired and interference signals each have a flat, band-

limited power spectral density centered at frequency w. We assume

the desired signal has bandwidth Awd, so its autocorrelation function

is

sin 0T_ jwoTRd(T) = Sd e (28)
(AwdT)

Substituting r = nTd and noting that

A dn (wOd ) T (29)
2 0 W _o d) = Y d Od'

where Bd is the fractional bandwidth

8d = wd (30)d o

and *d is the carrier phase shift between adjacent array elements,

Od= woTd (31)

10
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we have

-ddd)) , e~~ (32)
Pd~~nrd) - sn( )

Similarly, we assume the interference has bandwidth and define the

fractional bandwidth

Aw.
B1  = , (33)

and phase shift

= woTi " (34)

Then

sin(n Bi 'i ni

pi(nTi) = B e (35)

From (32) and (35), the covariance matrices in (24) - (26) can be

found. The steady-state weight vector W in (1) is then given by

W W (36)

As stated above, our purpose in this paper is to investigate

the effects of random errors in the steering vector Ws on the perform-

ance of the array. To this end, we write W in the form

11



ws = w1 + r , (37)

where W1 is the ideal steering vector and rl is an error vector. The

ideal steering vector is the steering vector that maximizes the array

response in the direction of the desired signal. Since the signal arrives

from angle ed (and the elements are a half wavelength apart), we choose

W1 = KsW o

jKsinod j27rsinOd j(N-1)7rsined T
= KS( I'e P ) , e(3)

where Ks is an arbitrary constant. rI is a vector containing the steering

vector errors. We write rI in the form

r 1 = K sr = K s  (Y Y2 ., . . . yN) T

K Ks(Y~r + JYli' YPr + JY2i' . . . I YNr + JNO)  (39)

where Ks is the same constant as in (3,,. With Wo and r normalized in

this way, each yk represents the error in the corresponding term

eJ(k-1)r sin 9d of Wo. Since this term has unit magnitude, Iyk' may be

regarded as the value of the error normalized to the magnitude of the

ideal steering vector weight, i.e., the fractional error.

To evaluate the effects of random errors, we shall assume each real

or imaginary component Ykr or yki of r is a statistically independent

random variable with zero mean and variance ow2 , i.e.,

12
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4 F [YkP n, (4n)

and

F. kp Y1Q = w 2 6 6 (41)i~k PQ'

where P and ) each stand for r (real) or i (imaginary).

When (37) - (39) are suhstituted in (36), the steady-state weight

vector is

W = Ks to - I (14, + r). (4?)

For this weight vector, the desired signal component nf the array output,

Sd(t), is

T
sd(t) = XdW, (43)

so the output desired signal power Pd is

Pd I E {fld(t)l 2 } = I E Wt  TXd T W

? t t -1 * T -1=Ks F f(W0 + r ) Do Xd Xd to (WO + r)j (44)

(where t denotes transpose conjugate). Here the expectation is taken over

hoth the random components of r and over the signals in Xd. Averaging
' * T

Xd Xd gives

T. 13



K2
Pd= K 2  E {W + r*) 01 ; 1 (W + r)}. (4)

When the expectation over r is carried out, the cross products between

W and r average to zero, so we are left with
0

K2 F 1*1 -l
= d -do o 0 + do 0 r

2 I
K [o 0 Od0 1 Wo + 20w2 Tr{4' %o 0}] (46)

do oW 0 a w 0a

where Tr (.) denotes the trace. A similar calculation of the output

interference power Pi and output noise power Pn gives

P1 = [ 0 1i 0 1 0 + 2 + 2 Tr {D1 o €01 (47)

and

Pn = K Wot: 0_1W o + 20w2 Tr {4' . (48)
n 0aT 0 0 a 0w

We define the desired signal-to-interference-plus-noise ratio (SINR)

out of the array to be

Pd

SINR = d (49)
Pi + Pn

Note that the constant Ks2/2o2 cancels out of this ratio and hence has

no effect on the SINR.

14
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In the next section we show curves of the SINR computed from (46)-

2
(49) and discuss how the error variance ow affects the array

performance.

III. RESULTS
2

We begin by showing how the array output SINR depends on ow

Figures 2-9 show typical results computed for a number of cases.
2 for

First, Figures 2-4 show the output SINR as a function of aw for

the case where a desired signal arrives at broadside (Od = 0) and for

no interference. The three figures are for different SNR's. Figure 2

is for d = 0 dB, Figure 3 for d = 10 dB and Figure 4 for d = 20 dB.

Each figure shows the SINR versus for 2, 3, 4, 6, 8 and 10 ele-

ments in the array.

These figures show several interesting things. First, the array

output SINR can drop rather rapidly with w . For example, Figure4

shows that when d = 20 dB and the array has 10 elements, the SINR drops

from 30 dB for w= 0 to 10 dB for w2 0001. w2 = .0001 corres-

ponds to an rms fractional error in each real and imaginary part of

the steering vector of V.701 "= 1%.

Second, Figures 2-4 show that the sensitivity of the SINR to aw
2

increases with the number of elements in the array. The more elements,

the faster the SINR drops with aw2 . Moreover, when Ow2 exceeds a cer-

tain value, increasing the number of elements in the array will actually

decrease the output SINR. If &d = 10 dB, for example, Figure 3 shows

that for O 2 - .001 the SINR is highest with 2 elements and drops as

more elements are added. To be able to increase the SINR by adding

15
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elements to the array, one must hold ow2 below a certain bound. As the

SNR increases, this bound decreases.

Third, Figures 2-4 show that the sensitivity of the SINR to ow
2

increases as the SNR increases. For td = 0 dB, Figure 2 shows that

the drop in SINR with aw2 is small. But for td = 10 dB (Figure 3) the

SINR drops more quickly with a 2, and for Ed 20 dB (Figure 4), the

drop is even more rapid. For a fixed number of elements, the effect

of SNR may be seen by plotting the SINR versus aw2 with the SNR as a

parameter. Figure 5 shows such a plot for a 3-element array and for

SNR = 0, 10, 20, and 30 dB. It is again seen how increasing the SNR

increases the sensitivity of the SINR to aw2.

Next, we add an interference signal to the problem. Figures 6-

9 show calculations similar to those in Figures 2-5 except that now

an interference signal is present at 0i = 300 with an INR of 40 dB and
12

zero bandwidth B. Figure 6 shows SINR versus aw for &d = 0 dB and

for 2, 3, 4, 6, 8, and 10 elements. Figure 7 shows similar results

for d = 10 dB, and Figure 8 shows E d = 20 dB. Figure 9 shows the SINR

versus aw2 for a 3-element array for several SNRs.

Comparing the curves in Figures 6-9 with those in Figures 2-5 shows

that the interference has a small influence on the sensitivity of the

2SINR to a w . The SINR drops slightly more quickly as a function of
a2 without interference than with it. This result occurs because the

w

interference null "uses up" one degree of freedom in the pattern. With

interference present, there is less flexibility left in the pattern

24
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I
to null the desired signal.

A different perspective on these results may be gained by plotting
2

the SINR as a function of the SNR with a w as a parameter. Figure 10

shows such a plot, for the case of 3 elements and no interference.

This type of curve shows that the error variance aw that can be tol-

erated basically depends on the desired signal dynamic range that must

2
be accommodated by the array. For a given aw , the SINR at first rises

with SNR and then drops. The larger aw2 the smaller the range of
2 -

SNR over which the SINR remains high. If w  10- , for example, the
2 = 1- 4,teSN

SINR exceeds 10 dB for 5 dB < SNR < 44 dB. But if jw 10, the SINR

exceeds 10 dB only for 5 dB < SNR < 24 dB. Each order of magnitude

2increase in decreases the available desired signal dynamic range

by 10 dB.

The bandwidth of the desired signal, Bd, has no effect on the results

in Figure 10, because the desired signal arrives from Od = 0. At this

angle, the interelement time delay is zero, so there is no decorrelation

of the signals in different array elements. However, if the desired

signal arrives off broadside, Bd affects the performance. It turns

out that bandwidth has the most effect when Bd = 90 because this case

gives the most decorrelation between element signals.

*For the special case of a 2-element array, there is only one degree
of freedom in the pattern to begin with. Hence, when an interference
signal is present, there is no further flexibility in the pattern, other
than its overall absolute magnitude, regardless of the particular error
components 6 Since a change in pattern magnitude does not effect the
SINR (it scaXes all s~gnals proportionally), the SINR in Figures 6-8
does not depend on (y for the case of 2 elements.

25
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To illustrate the effect of bandwidth, we first assume there are no
errors in the steering vector (aw2 = 0). Under this condition, Figure

11 shows the SINR plotted versus the SNR for ed = 900, for several values

of Bd in the range 0 < Bd < .5. It is seen that Bd causes a substantial

degradation in array performance even for Ow2 = 0.

2
Now suppose aw 0 0. Figure 12 shows the SINR versus the SNR for

several values of aw2 and for Bd in the range 0 < Bd < .05. In these

2 -curves, the bandwidth has a large effect only for aw 106 . For larger

values of aw2, the SINR has already been suppressed far enough by the

steering vector errors that a nonzero bandwidth causes little additional

degradation.

Finally, we consider the effect of an interference signal on these

curves. Figure 13 shows typical curves of SINR versus SNR for ed = 00,

oi = 300 and INR = 40 dB. Curves are shown for several values of inter-

ference bandwidth Bi in the range 0 < Bi < .1. For lower values of

SNR, where the steering vector errors are not affecting performance

(for example, for the region SNR < 20 dB if Ow2 = 10-6), increasing

Bi reduces the SINR in the well-known manner [2, 61. (For Bi # 0 the

interference is not nulled as well so the SINR is reduced.) For higher

values of SNR, however, where steering vector errors degrade performance,

increasing Bi actually increases the SINR. This curious behavior occurs

because, as B becomes la-ger, the array must use more degrees of freedom

to null the interference, so there are fewer left to null the desired

signal. With a 3-element array (as in Figure 13), for example, there

are 2 degrees of freedom. If B1 = 0, the array can null the interference

27
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with one degree of freedom and then use the other one to reduce the

desired signal. But, when Bi is increased, the array must use both

degrees of freedom to obtain adequate interference nulling. (It does

this by providing 2 nulls in the frequency band occupied by the inter-

ference.) The result is that there are no degrees of freedom left to

null the desired signal. Hence, the output desired signal power is

suppressed less than if Bi = 0 and the SINR remains higher. Studies

of the array patterns as a w and B. are varied confirm this behavior.

IV. CONCLUSIONS

In this paper we have examined the effect of random steering vector

errors on the performance of an Applebaum array. We assumed each com-

ponent of the steering vector contained a random error with variance
2

Ow . The errors were assumed uncorrelated from one element to another.

It was shown that the array output SINR can drop quickly as a function

2 2of the error variance a w2 . The sensitivity of the output SINR to a

is larger the higher the number of elements in the array and the larger

the SNR. The presence of an interference signal has only a small effect

on the sensitivity of the SINR to aw2 . The value of aw2 that may be

tolerated for a given application depends on the desired signal dynamic

range that must be accomodated. The larger the dynamic range, the smaller
2

aw must be.
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